Tag Archives: Data Guard

21c, VALIDATE FAST_START FAILOVER

The new Oracle 21c delivered a new feature for Data Guard Broker called VALIDATE FAST_START FAILOVER. As you can imagine, helps you do validate your configuration and you can check some information at the official doc.

Syntax

The syntax is simple and has no parameters. Just VALIDATE FAST_START FAILOVER:

DGMGRL> help validate

Performs an exhaustive set of validations for a member

Syntax:

  VALIDATE DATABASE [VERBOSE] <database name>;

  VALIDATE DATABASE [VERBOSE] <database name> DATAFILE <datafile number>
    OUTPUT=<file name>;

  VALIDATE DATABASE [VERBOSE] <database name> SPFILE;

  VALIDATE DATABASE [VERBOSE] <database name> STRICT
    { TEMP_FILES | FLASHBACK | LOG_FILES_CLEARED | LOG_FILE_CONFIGURATION |
      APPLY_PROPERTY | TRANSPORT_PROPERTY | ALL }
    [ <strict option> ... <strict option> ];

  VALIDATE FAR_SYNC [VERBOSE] <far_sync name>
    [WHEN PRIMARY IS <database name>];

  VALIDATE NETWORK CONFIGURATION FOR { ALL | <member name> };

  VALIDATE STATIC CONNECT IDENTIFIER FOR { ALL | <database name> };

  VALIDATE FAST_START FAILOVER;

DGMGRL>

And can be used even with FAST_TART failover disabled:

DGMGRL> VALIDATE FAST_START FAILOVER;
  Fast-Start Failover:   Disabled
  Protection Mode:      MaxAvailability
  Primary:              ora21dg

Fast-start failover not possible:
  Fast-start failover is disabled.

Other issues:
  Fast-start failover threshold may be too low for RAC databases.
DGMGRL>

Click here to read more…

21c, PREPARE DATABASE FOR DATA GUARD

With the release of Oracle 21c is time for us to start to check the new features. Besides 21c is an innovative release, it shows what we will use in the future in daily activities. For Data Guard and Broker one new feature is the PREPARE DATABASE FOR DATA GUARD that adjusts the database and some parameters to become primary. Release notes can be checked here.

Click here to read more…

ZDLRA + MAA, Protection for Platinum Architecture

The Platinum architecture is the last defined at MAA references and is the highest level of protection that you can achieve for MAA. It goes beyond the Gold protection (that I explained in my previous post) and you can have application continuity even version upgrade for your database.

The image above was taken from https://www.oracle.com/a/tech/docs/maa-overview-onpremise-2019.pdf

Click here to read more…

ZDLRA + MAA, Protection for Gold Architecture

The Gold architecture for MAA is used to emphasis the application continuity. All the possible outages (planned or no) are protected by Oracle features. Here we are one step further and start to design using multi-site architecture. Data Guard, RAC, Oracle Clusterware, everything is there. But even with these, ZDLRA is still needed to allow complete protection.

The image above taken from https://www.oracle.com/a/tech/docs/maa-overview-onpremise-2019.pdf.

With the MAA references, we have the blueprints and highlights how to protect them since the standalone/single instance until the multiple site database. But for Gold we are beyond RPO and RTO, they are important but application continuity and data continuity join to complete the whole picture.

Click here to read more…

MAA, Blueprints and On-Premise Architecture Reference

The Oracle Maximum Availability Architecture (MAA) is the correct way to protect your Oracle database environment (and investment). It covers from a simple single instance to Exadata/Engineered Systems RAC and a multi-site database with Data Guard protection. But do you know that to reach the MAA (whatever the architecture level that you are protecting) you need to use ZDLRA?

So, I will start a series of posts to cover the MAA and ZDLRA. Discussing what you need to do (and how) to reach the maximum level of availability as is at the MAA architecture (as defined in the documentation and best practices: Oracle Maximum Availability Architecture (MAA) Blueprints for On-PremisesMAA Best Practices – Oracle Database, and Maximum Availability with Oracle Database 19c).

Why ZDLRA?

The question is why ZDLRA is needed? The point from ZDLRA is that it can (and needed to be used) to protect and reach zero RPO to all architectures. ZDLRA is more (much more) than just a backup appliance, is the core of every MAA design. You can’t reach zero RPO without using it.

Click here to read more…

Fast-Start Failover, Observe-Only Mode and Health Conditions

Oracle Data Guard Broker allows the database administrators to automate some tasks and an easy way to configure properly a lot of features and details for data guard environments. The Fast-Start FailOver (FSFO) allows the broker to automatically failover to standby database in case of failure of the primary. But until 19c the only option is always to trigger the failover. This changed at 19c with a nice new feature that allows us to put FSFO in Observe-Only Mode.

In this post, I will focus just on new features for FSFO like Observer-Only Mode and Health Conditions for it. Lag and other details will not be covered here.

Observe-Only Mode

The Observe-Only Mode is a simple change that allows putting the FSFO to just observing/monitoring the DG environment, but in case of failure, it does not change the roles between primary and standby. Simple like that. As the Broker documentation for Observe-Only Mode says:

The observe-only mode enables you to test the impact of using fast-start failover in your configuration, without making any actual changes to the configuration.

Click here to read more…

DB_UNIQUE_NAME, PDB, and Data Guard

When you change the parameters for the database is possible to specify the db_unique_name and allow more control where you want to apply/use it. This is very useful to limit the scope, but you need to be aware of some collateral effects. Even not present at the official doc, you can use it. But check here some details that you need to take care of.

Click here to read more…

ZDLRA, Multi-site protection – ZERO RPO for Primary and Standby

ZDLRA can be used from a small single database environment to big environments where you need protection in more than one site at the same time. At every level, you can use different features of ZDLRA to provide desirable protection. Here I will show how to reach zero RPO for both primary and standby databases. All the steps, doc, and tech parts are covered.

You can check the examples the reference for every scenario int these two papers from the Oracle MAA team: MAA Overview On-Premises and Oracle MAA Reference Architectures. They provide good information on how to prepare to reduce RPO and improve RTO. In resume, the focus is the same, reduce the downtime and data loss in case of a catastrophe (zero RPO, and zero RPO).

Multi-site protection

If you looked both papers before, you saw that to provide good protection is desirable to have an additional site to, at least, send the backups. And if you go higher, for GOLD and PLATINUM environments, you start to have multiple sites synced with data guard. These Critical/Mission-critical environments need to be protected for every kind of catastrophic failure, from disk until complete site outage (some need to follow specific law’s requirements, bank as an example).

And the focus of this post is these big environments. I will show you how to use ZDLRA to protect both sites, reaching zero RPO even for standby databases. And doing that, you can survive for a catastrophic outage (like entire datacenter failure) and still have zero RPO. Going further, you can even have zero RPO if you lose completely on site when using real-time redo for ZDLRA, and this is not written in the docs by the way.

Click here to read more…

ZDLRA, Real-Time Redo and Zero RPO

The idea for Real-Time Redo is to reach zero RPO for every kind of database and this includes ones with and without DG. As you can see in my last post, where I showed how to configure Real-Time Redo for one database, some little steps need to be executed and they are pretty similar than a remote destination for archivelog for DG.

But if you noticed, the configuration for the remote destination was defined as ASYNC, and hinted like that at ZDLRA docs (“Protection of Ongoing Transactions” or at “How Real-Time Redo Transport Works”). In the same post, I suggested as “controversial” because the ASYNC does not guarantee the RPO zero. 

You can see more in the DataGuard docs at (Oracle Data Guard Protection Modes and Oracle Data Guard Concepts and Administration), but the resume it is:

  • ASYNC: The primary database does not wait for the response from a remote destination.
  • SYNC/NOAFIRM: The Primary database holds commit until the remote destination report that received the redo data. It does not wait until the remote site report that wrote the data in the disc.
  • SYNC/AFFIRM: The primary database holds commit until the remote destination report that received redo data and wrote it at the disk.

You can read with more details the difference here: Best Practices for Synchronous Redo Transport and Best Practices for Asynchronous Redo Transport.

The idea is simple, if you use ASYNC, there is no guarantee for zero data loss between the primary database and the remote destination.

Click here to read more…

ZDLRA, Real-Time Redo

Real-time redo transport is the feature that allows you to reduce to zero the RPO (Recovery Point Objective) for your database. Check how to configure real-time redo, the steps, parameters, and other details that need to be modified to enable it.

The idea behind real-time redo transport it is easy, basically the ZDLRA it is a remote destination for your redo log buffers/archivelogs of your database. It is really, really, similar to what occurs for data guard configurations (but here you don’t need to set all datafiles as an example). It is not the same too because ZDLRA can detect if the database stops/crash and will generate the archivelog (at ZDLRA side) with all the received redo and this can be used to restore to, at least zero/sub-seconds, of data loss.

Using real-time redo it is the only way to reach RPO zero. With other features of ZDLRA, you can have a better backup window time (but just that) using incremental backups. Just using real-time redo you reach zero RPO and this impacts directly how to configure for MAA compliance. There are a lot of options and level of protection for MAA that you can check at “Maximum Availability Architecture (MAA) – On-Premises HA Reference Architectures 2019”, “Maximum Availability Architecture Best Practices for Oracle Cloud”, “Oracle MAA Reference Architectures”, “Maximum Availability Architecture – Best Practices for Oracle Database 19c”.

This post starts from one environment that you already enrolled in the database at ZDLRA. I already wrote about how to do that, you can check here in my previous post. This is the first post about real-time redo, here you will see how to configure and verify it is working.

Click here to read more…